Vector fields on Π-symmetric flag supermanifolds ${ }^{1}$

E.G.Vishnyakova

Abstract

The main result of this paper is the computation of the Lie superalgebras of holomorphic vector fields on the complex Π-symmetric flag supermanifolds, introduced by Yu.I. Manin. We prove that with one exception any vector field is fundamental with respect to the natural action of the Lie superalgebra $\mathfrak{q}_{n}(\mathbb{C})$.

1 Introduction

A Π-symmetric flag supermanifold is a subsupermanifold in a flag supermanifold in $\mathbb{C}^{n \mid n}$ that is invariant with respect to an odd involution in $\mathbb{C}^{n \mid n}$. This supermanifold possesses a transitive action of the linear classical Lie superalgebra $\mathfrak{q}_{n}(\mathbb{C})$, which belongs to one of two "strange series" in the Kac classification [Kac]. It turns out that with one exceptional case all global holomorphic vector fields are fundamental for this action of the Lie superalgebra $\mathfrak{q}_{n}(\mathbb{C})$. In the simplest case of super-Grassmannians the similar result was obtained in [Oni].

The main result of this paper was announced in [V4] and the idea of the proof was given in [V2]. The goal of this notes is to give a detailed proof. We also describe the connected component of the automorphism supergroup of this supermanifolds.

2 Flag supermanifolds

We will use the word "supermanifold" in the sense of Berezin and Leites [BL], see also [Oni] for details. Throughout, we will restrict our attention to the complex-analytic version of the theory of supermanifolds. Recall that a complex-analytic superdomain of dimension $n \mid m$ is a \mathbb{Z}_{2}-graded ringed space of the form $\left(\mathcal{U}_{0}, \mathcal{F}_{\mathcal{U}_{0}} \otimes_{\mathbb{C}} \Lambda(m)\right.$), where $\mathcal{F}_{\mathcal{U}_{0}}$ is the sheaf of holomorphic functions on an open set $\mathcal{U}_{0} \subset \mathbb{C}^{n}$ and $\bigwedge(m)$ is the exterior (or Grassmann) algebra with m generators. A complex-analytic supermanifold of dimension $n \mid m$ is a $\mathbb{Z}_{2^{-}}$ graded locally ringed space that is locally isomorphic to a complex superdomain of dimension $n \mid m$. Let $\mathcal{M}=\left(\mathcal{M}_{0}, \mathcal{O}_{\mathcal{M}}\right)$ be a supermanifold and \mathcal{J} be the subsheaf of ideals generated by odd elements in $\mathcal{O}_{\mathcal{M}}$. We set $\mathcal{F}_{\mathcal{M}_{0}}:=\mathcal{O}_{\mathcal{M}} / \mathcal{J}$. Then $\left(\mathcal{M}_{0}, \mathcal{F}_{\mathcal{M}_{0}}\right)$ is a usual complexanalytic manifold, it is called the underlying space of \mathcal{M}. Usually we will write \mathcal{M}_{0} instead of $\left(\mathcal{M}_{0}, \mathcal{F}_{\mathcal{M}_{0}}\right)$.

In this paper we denote by $\mathbf{F}_{k \mid l}^{m \mid n}$ a flag supermanifold of type $k \mid l$ in the vector superspace $\mathbb{C}^{m \mid n}$. Here we set $k=\left(k_{1}, \ldots, k_{r}\right)$ and $l=\left(l_{1}, \ldots, l_{r}\right)$ such that

$$
\begin{gather*}
0 \leq k_{r} \leq \ldots \leq k_{1} \leq m, \quad 0 \leq l_{r} \ldots \leq l_{1} \leq n \quad \text { and } \\
0<k_{r}+l_{r}<\ldots<k_{1}+l_{1}<m+n . \tag{1}
\end{gather*}
$$

[^0]A Π-symmetric flag supermanifold $\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}$ of type $k=\left(k_{1}, \ldots, k_{r}\right)$ in $\mathbb{C}^{n \mid n}$ is a certain subsupermanifold in $\mathbf{F}_{k \mid k}^{n \mid n}$. Let us give an explicite description of these supermanifolds in terms of charts and local coordinates (see also [Man, V1, V3]).

Let us take two non-negative integers $m, n \in \mathbb{Z}$ and two sets of non-negative integers

$$
k=\left(k_{1}, \ldots, k_{r}\right), \quad \text { and } \quad l=\left(l_{1}, \ldots, l_{r}\right)
$$

such that (1) holds. The underlying space of the supermanifold $\mathbf{F}_{k \mid l}^{m \mid n}$ is the product $\mathbf{F}_{k}^{m} \times \mathbf{F}_{l}^{n}$ of two manifolds of flags of type $k=\left(k_{1}, \ldots, k_{r}\right)$ and $l=\left(l_{1}, \ldots, l_{r}\right)$ in \mathbb{C}^{m} and \mathbb{C}^{n}, respectively. For any $s=1, \ldots, r$ let us fix two subsets

$$
I_{s \overline{0}} \subset\left\{1, \ldots, k_{s-1}\right\} \quad \text { and } \quad I_{s \overline{1}} \subset\left\{1, \ldots, l_{s-1}\right\}
$$

where $k_{0}=m$ and $l_{0}=n$, such that $\left|I_{s \overline{0}}\right|=k_{s}$, and $\left|I_{s \overline{1}}\right|=l_{s}$. We set $I_{s}=\left(I_{s \overline{0}}, I_{s \overline{1}}\right)$ and $I=\left(I_{1}, \ldots, I_{r}\right)$. Let us assign the following $\left(k_{s-1}+l_{s-1}\right) \times\left(k_{s}+l_{s}\right)$-matrix

$$
Z_{I_{s}}=\left(\begin{array}{cc}
X_{s} & \Xi_{s} \tag{2}\\
\mathrm{H}_{s} & Y_{s}
\end{array}\right), \quad s=1, \ldots, r,
$$

to any I_{s}. Here we assume that $X_{s}=\left(x_{i j}^{s}\right) \in \operatorname{Mat}_{k_{s-1} \times k_{s}}(\mathbb{C}), Y_{s}=\left(y_{i j}^{s}\right) \in \operatorname{Mat}_{l_{s-1} \times l_{s}}(\mathbb{C})$, and elements of the matrices $\Xi_{s}=\left(\xi_{i j}^{s}\right), \mathrm{H}_{s}=\left(\eta_{i j}^{s}\right)$ are odd. We also assume that $Z_{I_{s}}$ contains the identity submatrix $E_{k_{s}+l_{s}}$ of size $\left(k_{s}+l_{s}\right) \times\left(k_{s}+l_{s}\right)$ in the lines with numbers $i \in I_{s \overline{0}}$ and $k_{s-1}+i, i \in I_{s \overline{1}}$. For example in case

$$
I_{s \overline{0}}=\left\{k_{s-1}-k_{s}+1, \ldots, k_{s-1}\right\} \quad \text { and } \quad I_{s \overline{1}}=\left\{l_{s-1}-l_{s}+1, \ldots, l_{s-1}\right\}
$$

the matrix $Z_{I_{s}}$ has the following form:

$$
Z_{I_{1}}=\left(\begin{array}{cc}
X_{s} & \Xi_{s} \\
E_{k_{s}} & 0 \\
\mathrm{H}_{s} & Y_{s} \\
0 & E_{k_{s}}
\end{array}\right)
$$

(For simplisity of notation we use here the same letters X_{s}, Y_{s}, Ξ_{s} and H_{s} as in (2).)
We see that the sets $I_{\overline{0}}=\left(I_{1 \overline{0}}, \ldots, I_{r \overline{0}}\right)$ and $I_{\overline{1}}=\left(I_{1 \overline{1}}, \ldots, I_{r \overline{1}}\right)$ determine the charts $U_{I_{\overline{0}}}$ and $V_{I_{\overline{1}}}$ on the flag manifolds \mathbf{F}_{k}^{m} and \mathbf{F}_{l}^{n}, respectively. We can take the non-trivial elements (i.e., those not contained in the identity submatrix) from X_{s} and Y_{s} as local coordinates in $U_{I_{\overline{0}}}$ and $U_{I_{\overline{1}}}$, respectively. Summing up, we defined an atlas

$$
\left\{U_{I}=U_{I_{\overline{0}}} \times U_{I_{\overline{1}}}\right\} \quad \text { on } \quad \mathbf{F}_{k}^{m} \times \mathbf{F}_{l}^{n}
$$

with chards parametrized by $I=\left(I_{s}\right)$. In addition the sets $I_{\overline{0}}$ and $I_{\overline{1}}$ determine the superdomain \mathcal{U}_{I} with underlying space U_{I} and with even and odd coordinates $x_{i j}^{s}, y_{i j}^{s}$ and $\xi_{i j}^{s}, \eta_{i j}^{s}$, respectively. (As above we assume that $x_{i j}^{s}, y_{i j}^{s}, \xi_{i j}^{s}$ and $\eta_{i j}^{s}$ are non-trivial. That is they are not contained in the identity submatrix.) Let us define the transition functions between two superdomains corresponding to $I=\left(I_{s}\right)$ and $J=\left(J_{s}\right)$ by the following formulas:

$$
\begin{equation*}
Z_{J_{1}}=Z_{I_{1}} C_{I_{1} J_{1}}^{-1}, \quad Z_{J_{s}}=C_{I_{s-1} J_{s-1}} Z_{I_{s}} C_{I_{s} J_{s}}^{-1}, \quad s \geq 2 \tag{3}
\end{equation*}
$$

Here $C_{I_{s} J_{s}}$ is an invertible submatrix in $Z_{I_{s}}$ that coinsists of lines with numbers $i \in J_{s \overline{0}}$ and $k_{s-1}+i$, where $i \in J_{s \overline{1}}$. In other words, we choose the matrix $C_{I_{s} J_{s}}$ in such a way that $Z_{J_{s}}$ contains the identity submatrix $E_{k_{s}+l_{s}}$ in lines with numbers $i \in J_{s \overline{0}}$ and $k_{s-1}+i$, where $i \in J_{s \overline{1}}$. These charts and transition functions define a supermanifold that we denote by $\mathbf{F}_{k \mid l}^{m \mid n}$. This supermanifold we will call the supermanifold of flags of type $k \mid l$. In case $r=1$ this supermanifold is called the super-Grassmannian and is denoted by $\mathbf{G r}_{m|n, k| l}$ (see also [Oni, Man]).

Let us take $n \in \mathbb{N}$ and $k=\left(k_{1}, \ldots, k_{r}\right)$, such that

$$
0<k_{1}<\ldots<k_{r}<n .
$$

We will define the supermanifold of Π-symmetric flags $\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}$ of type k in $\mathbb{C}^{n \mid n}$ as a certain subsupermanifold in $\mathbf{F}_{k \mid k}^{n \mid n}$. The underlying space of $\boldsymbol{\Pi} \mathbf{F}_{k \mid k}^{n \mid n}$ is the diagonal in $\mathbf{F}_{k}^{n} \times \mathbf{F}_{k}^{n}$, that is clearly isomorphic to \mathbf{F}_{k}^{n}. For any $s=1, \ldots, r$ we fix a set $I_{s \overline{0}}=I_{s \overline{1}} \subset\left\{1, \ldots, k_{s-1}\right\}$, where $\left|I_{s \overline{0}}\right|=k_{s}$ and $k_{0}=n$. Consider the chart on $\mathbf{F}_{k \mid k}^{n \mid n}$ corresponding to $I=\left(I_{s}\right)$, where $I_{s}=\left(I_{s \overline{0}}, I_{s \overline{0}}\right)$. Such charts cover the diagonal in $\mathbf{F}_{k}^{n} \times \mathbf{F}_{k}^{n}$. Let us define the subsupermanifold of Π-symmetric flags in these charts by the equations $X_{s}=Y_{s}, \Xi_{s}=\mathrm{H}_{s}$. It is easy to see that these equations are well-defined with respect to the transition functions (3). The coordinate matrices in this case have the following form

$$
Z_{I_{s}}=\left(\begin{array}{ll}
X_{s} & \Xi_{s} \tag{4}\\
\Xi_{s} & X_{s}
\end{array}\right), \quad s=1, \ldots, r .
$$

(Compare with (2).) As above even and odd local coordinates on $\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}$ are non-trivial elements from X_{s} and Ξ_{s}, respectively. The transition functions between two charts are defined again by formulas (3). We can consider the supermanifold $\boldsymbol{\Pi} \mathbf{F}_{k \mid k}^{n \mid n}$ as the "set of fixedpoint" of a certain odd involution Π in $\mathbb{C}^{n \mid n}$ (see [Man]). In case $r=1$, the supermanifold of Π-symmetric flags is called also the Π-symmetric super-Grassmannian. We will denote it by $\boldsymbol{\Pi} \mathbf{G r}_{n|n, k| k}$.

Let $\mathcal{M}=\left(\mathcal{M}_{0}, \mathcal{O}_{\mathcal{M}}\right)$ be a complex-analytic supermanifold. Denote by $\mathcal{T}=\operatorname{Der}\left(\mathcal{O}_{\mathcal{M}}\right)$ the tangent sheaf or the sheaf of vector fields on \mathcal{M}. It is a sheaf of Lie superalgebras with respect to the multiplication $[X, Y]=Y X-(-1)^{p(X) p(Y)} X Y$. The global sections of \mathcal{T} are called holomorphic vector fields on \mathcal{M}. They form a complex Lie superalgebra that we will denote by $\mathfrak{v}(\mathcal{M})$. This Lie superalgebra is finite dimensional if \mathcal{M}_{0} is compact. The goal of this paper is to compute the Lie superalgebra $\mathfrak{v}(\mathcal{M})$ in the case when \mathcal{M} is a supermanifold of Π-symmetric flags of type k in $\mathbb{C}^{n \mid n}$.

We denote by $\mathfrak{q}_{n}(\mathbb{C})$ the Lie subsuperalgebra in $\mathfrak{g l}_{n \mid n}(\mathbb{C})$ that coinsists of the following marices:

$$
\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right), \quad \text { where } \quad A, B \in \mathfrak{g l}_{n}(\mathbb{C})
$$

Denote by $\mathrm{Q}_{n}(\mathbb{C})$ the Lie supergroup of $\mathfrak{q}_{n}(\mathbb{C})$. In $[\mathrm{Man}]$ an action of $\mathrm{Q}_{n}(\mathbb{C})$ on the supermanifold $\Pi_{k \mid k}^{n \mid n}$ was defined. In our coordinates this action is given by the following formulas:

$$
\begin{align*}
& \left(L,\left(Z_{I_{1}}, \ldots, Z_{I_{r}}\right)\right) \longmapsto\left(\tilde{Z}_{J_{1}}, \ldots, \tilde{Z}_{J_{r}}\right), \quad \text { where } \\
& L \in \mathrm{Q}_{n}(\mathbb{C}), \quad \tilde{Z}_{J_{1}}=L Z_{I_{1}} C_{1}^{-1}, \quad \tilde{Z}_{J_{s}}=C_{s-1} Z_{I_{s}} C_{s}^{-1} \tag{5}
\end{align*}
$$

Here C_{1} is an invertible submatrix in $L Z_{I_{1}}$ that consists of lines with numbers i and $n+i$, where $i \in J_{1}$; and $C_{s}, s \geq 2$, is an invertible submatrix in $C_{s-1} Z_{I_{s}}$ that consists of lines with numbers i and $k_{s-1}+i$, where $i \in J_{s}$. This Lie supergroup action induces a Lie superalgebra homomorphism

$$
\mu: \mathfrak{q}_{n}(\mathbb{C}) \rightarrow \mathfrak{v}\left(\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}\right) .
$$

In case $r=1$ in [Oni, Proposition 5.5] it was proven that $\operatorname{Ker} \mu=\left\langle E_{2 n}\right\rangle$, where $E_{2 n}$ is the identity matrix of size $2 n$. In general case $r>1$ the proof is similar. Hence, μ induces an injective homomorphism of Lie superalgebras $\mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle \rightarrow \mathfrak{v}\left(\boldsymbol{\Pi} \mathbf{F}_{k \mid k}^{n \mid n}\right)$. We will show that with one exception this homomorphism is an isomorphism.

3 About superbundles

Recall that a morphism of a complex-analytic supermanifold \mathcal{M} to a complex-analytic supermanifold \mathcal{N} is a pair $f=\left(f_{0}, f^{*}\right)$, where $f_{0}: \mathcal{M}_{0} \rightarrow \mathcal{N}_{0}$ is a holomorphic map and $f^{*}: \mathcal{O}_{\mathcal{N}} \rightarrow\left(f_{0}\right)_{*}\left(\mathcal{O}_{\mathcal{M}}\right)$ is a homomorphism of sheaves of superalgebras.
Definition. We say that a superbundle with fiber \mathcal{S}, base \mathcal{B}, total space \mathcal{M} and projection $p=\left(p_{0}, p^{*}\right): \mathcal{M} \rightarrow \mathcal{B}$ is given if there exists an open covering $\left\{U_{i}\right\}$ on \mathcal{B}_{0} and isomorphisms $\psi_{i}:\left(p_{0}^{-1}\left(U_{i}\right), \mathcal{O}_{\mathcal{M}}\right) \rightarrow\left(U_{i}, \mathcal{O}_{\mathcal{B}}\right) \times \mathcal{S}$ such that the following diagram is commutative:

where $p r$ is the natural projection.
Remark. From the form of transition functions (3) it follows that for $r>1$ the supermanifold $\boldsymbol{\Pi} \mathbf{F}_{k \mid k}^{n \mid n}$ is a superbundle with base $\boldsymbol{\Pi} \mathbf{G r}_{n\left|n, k_{1}\right| k_{1}}$ and fiber $\boldsymbol{\Pi F}_{k^{\prime} \mid k^{\prime}}^{k_{1} \mid k_{1}}$, where $k^{\prime}=\left(k_{2}, \ldots, k_{r}\right)$. In local coordinates the projection p is given by

$$
\left(Z_{1}, Z_{2}, \ldots Z_{n}\right) \longmapsto\left(Z_{1}\right) .
$$

Moreover, the formulas (5) tell us that the projection p is equivariant with respect to the action of the supergroup $\mathrm{Q}_{n}(\mathbb{C})$ on $\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}$ and $\boldsymbol{\Pi} \mathbf{G r}_{n\left|n, k_{1}\right| k_{1}}$.

Let $p=\left(p_{0}, p^{*}\right): \mathcal{M} \rightarrow \mathcal{N}$ be a morphism of supermanifolds. A vector field $v \in \mathfrak{v}(\mathcal{M})$ is called projectable with respect to p, if there exists a vector field $v_{1} \in \mathfrak{v}(\mathcal{N})$ such that

$$
p^{*}\left(v_{1}(f)\right)=v\left(p^{*}(f)\right) \quad \text { for all } \quad f \in \mathcal{O}_{\mathcal{N}} .
$$

In this case we say that v is projected into v_{1}. Projectable vector fields form a Lie subsuperalgebra $\overline{\mathfrak{v}}(\mathcal{M})$ in $\mathfrak{v}(\mathcal{M})$. In case if p is a projection of a superbundle, the homomorphism $p^{*}: \mathcal{O}_{\mathcal{N}} \rightarrow p_{*}\left(\mathcal{O}_{\mathcal{M}}\right)$ is injective. Hence, any projectable vector field v is projected into unique vector field $v_{1}=\mathcal{P}(v)$. The map

$$
\mathcal{P}: \overline{\mathfrak{v}}(\mathcal{M}) \rightarrow \mathfrak{v}(\mathcal{N}), \quad v \mapsto v_{1}
$$

is a homomorphism of Lie superalgebras. A vector field $v \in \mathfrak{v}(\mathcal{M})$ is called vertical, if $\mathcal{P}(v)=0$. Vertical vector fields form an ideal $\operatorname{Ker} \mathcal{P}$ in $\overline{\mathfrak{v}}(\mathcal{M})$.

We will need the following proposition proved in [B].
Proposition 1. Let $p: \mathcal{M} \rightarrow \mathcal{B}$ be the projection of a superbundle with fiber \mathcal{S}. If $\mathcal{O}_{\mathcal{S}}\left(\mathcal{S}_{0}\right)=\mathbb{C}$, then any holomorphic vector field from $\mathfrak{v}(\mathcal{M})$ is projectable with respect to p.

For any superbundle $p: \mathcal{M} \rightarrow \mathcal{B}$ with fiber \mathcal{S} we define the sheaf \mathcal{W} on \mathcal{B}_{0} in the following way. We asign to any open set $U \subset \mathcal{B}_{0}$ the set of all vertical vector fields on the supermanifold $\left(p_{0}^{-1}(U), \mathcal{O}_{\mathcal{M}}\right)$. In [V1] the following statement was proven.
Proposition 2. Assume that \mathcal{S}_{0} is compact. Then \mathcal{W} is a localy free sheaf of $\mathcal{O}_{\mathcal{B}}$-modules and $\operatorname{dim} \mathcal{W}=\operatorname{dim} \mathfrak{v}(\mathcal{S})$. The Lie algebra $\mathcal{W}\left(\mathcal{B}_{0}\right)$ coincides with the ideal of all vertical vector fields in $\mathfrak{v}(\mathcal{M})$.

Let us describe the corresponding to \mathcal{W} graded sheaf as in [V1]. Consider the following filtration in $\mathcal{O}_{\mathcal{B}}$

$$
\mathcal{O}_{\mathcal{B}}=\mathcal{J}^{0} \supset \mathcal{J}^{1} \supset \mathcal{J}^{2} \ldots
$$

where \mathcal{J} is the sheaf of ideals in $\mathcal{O}_{\mathcal{B}}$ generated by odd elements. We have the corresponding graded sheaf of superalgebras

$$
\tilde{\mathcal{O}}_{\mathcal{B}}=\bigoplus_{p \geq 0}\left(\tilde{\mathcal{O}}_{\mathcal{B}}\right)_{p}
$$

where $\left(\tilde{\mathcal{O}}_{\mathcal{B}}\right)_{p}=\mathcal{J}^{p} / \mathcal{J}^{p+1}$. Putting $\mathcal{W}_{(p)}=\mathcal{J}^{p} \mathcal{W}$ we get the following filtration in \mathcal{W} :

$$
\begin{equation*}
\mathcal{W}=\mathcal{W}_{(0)} \supset \mathcal{W}_{(1)} \supset \ldots \tag{6}
\end{equation*}
$$

We define the \mathbb{Z}-graded sheaf of $\mathcal{F}_{\mathcal{B}_{0}}$-modules by

$$
\begin{equation*}
\tilde{\mathcal{W}}=\bigoplus_{p \geq 0} \tilde{\mathcal{W}}_{p}, \quad \text { where } \quad \tilde{\mathcal{W}}_{p}=\mathcal{W}_{(p)} / \mathcal{W}_{(p+1)} \tag{7}
\end{equation*}
$$

where $\mathcal{F}_{\mathcal{B}_{0}}$ is the structure sheaf of the underlying space \mathcal{B}_{0}. The \mathbb{Z}_{2}-grading in $\mathcal{W}_{(p)}$ induces the \mathbb{Z}_{2}-grading in $\tilde{\mathcal{W}}_{p}$. Note that the natural map $\mathcal{W}_{(p)} \rightarrow \tilde{\mathcal{W}}_{p}$ is even.

4 Functions on П-symmetric flag supermanifolds

In this section we show that the superbundle described in Section 2, that is the Π-symmetric flag supermanifold, satisfies conditions of Proposition 1. Holomorphic functions on other flag supermanifolds was considered in [V3].
Lemma 1. Let \mathcal{M} be a superbundle with base \mathcal{B} and fiber \mathcal{S}. Assume that $\mathcal{O}_{\mathcal{B}}\left(\mathcal{B}_{0}\right)=\mathbb{C}$ and $\mathcal{O}_{\mathcal{S}}\left(\mathcal{S}_{0}\right)=\mathbb{C}$. Then $\mathcal{O}_{\mathcal{M}}\left(\mathcal{M}_{0}\right)=\mathbb{C}$.

In the Lie superalgebra $\mathfrak{q}_{n}(\mathbb{C})_{\overline{0}} \simeq \mathfrak{g l}_{n}(\mathbb{C})$ we fix the following Cartan subalgebra:

$$
\mathfrak{t}=\left\{\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)\right\}
$$

the following system of positive roots:

$$
\Delta^{+}=\left\{\mu_{i}-\mu_{j}, i<j\right\}
$$

and the following system of simple roots:

$$
\Phi=\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}, \quad \alpha_{i}=\mu_{i}-\mu_{i+1}
$$

Denote by $\mathfrak{t}^{*}(\mathbb{R})$ a real subspace in \mathfrak{t}^{*} spaned by μ_{j}. Consider the scalar product (,) in $\mathfrak{t}^{*}(\mathbb{R})$ such that the vectors μ_{j} form an orthonormal basis. An element $\gamma \in \mathfrak{t}^{*}(\mathbb{R})$ is called dominant if $(\gamma, \alpha) \geq 0$ for all $\alpha \in \Delta^{+}$.

We need the Borel-Weyl-Bott Theorem (see for example [A] for details). Let $G \simeq \mathrm{GL}_{n}(\mathbb{C})$ be the underlying space of $\mathrm{Q}_{n}(\mathbb{C}), P$ be a parabolic subgroup in G and R be the reductive part of P. Assume that $\mathbf{E}_{\varphi} \rightarrow G / P$ is the homogeneous vector bundle corresponding to a representation φ of P in $E=\left(\mathbf{E}_{\varphi}\right)_{P}$. Denote by \mathcal{E}_{φ} the sheaf of holomorphic section of this vector bundle.

Theorem 1. [Borel-Weyl-Bott]. Assume that the representation $\varphi: P \rightarrow G L(E)$ is completely reducible and $\lambda_{1}, \ldots, \lambda_{s}$ are highest weights of $\varphi \mid R$. Then the G-module $H^{0}\left(G / P, \mathcal{E}_{\varphi}\right)$ is isomorphic to the sum of irruducible G-modules with highest weights $\lambda_{i_{1}}, \ldots, \lambda_{i_{t}}$, where $\lambda_{i_{a}}$ are dominant highest weights.

The main result of this section is the following theorem.
Theorem 2. Let $\mathcal{M}=\boldsymbol{\Pi} \mathbf{F}_{k \mid k}^{n \mid n}$, then $\mathcal{O}_{\mathcal{M}}\left(\mathcal{M}_{0}\right)=\mathbb{C}$.
Proof. First consider the case $r=1$. This is $\mathcal{M}=\Pi \operatorname{Gr}_{n|n, k| k}$. Let us prove that $\tilde{\mathcal{O}}_{\mathcal{M}}\left(\mathcal{M}_{0}\right)=$ \mathbb{C}, where $\tilde{\mathcal{O}}_{\mathcal{M}}$ is defined as in the previous section. We use the Borel-Weyl-Bott Theorem. The manifold $\mathcal{M}_{0}=\mathbf{G r}_{n, k}$ is isomorphic to G / H, where $G=\mathrm{GL}_{n}(\mathbb{C})$ and

$$
H=\left\{\left.\left(\begin{array}{cc}
A & 0 \tag{8}\\
C & B
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{n-k}(\mathbb{C}), \quad B \in \mathrm{GL}_{k}(\mathbb{C})\right\}
$$

The reductive part R of H is given by the equation $C=0$. It is isomorphic to $\mathrm{GL}_{n-k}(\mathbb{C}) \times$ $\mathrm{GL}_{k}(\mathbb{C})$. Let ρ_{1} and ρ_{2} be the standard representations of $\mathrm{GL}_{n-k}(\mathbb{C})$ and $\mathrm{GL}_{k}(\mathbb{C})$, respectively. Denote by $\mathbf{E} \rightarrow \mathcal{M}_{0}$ the holomorphic vector bundle that is determined by the localy free sheaf $\mathcal{E}=\mathcal{J} / \mathcal{J}^{2}$, where \mathcal{J} is the sheaf of ideals generated by odd elements in $\mathcal{O}_{\mathcal{M}}$. In [Oni, Proposition 5.2] it was proven that \mathbf{E} is a homogeneous vector bundle corresponding to the representation φ of H such that

$$
\varphi \mid R=\rho_{1}^{*} \otimes \rho_{2}
$$

Since $\left(\tilde{\mathcal{O}}_{\mathcal{M}}\right)_{p} \simeq \bigwedge^{p} \mathcal{E}$, we have to find the vector space of global sections of $\bigwedge^{p} \mathbf{E}$. This vector bundle corresponds to the representation $\bigwedge^{p} \varphi=\bigwedge^{p}\left(\rho_{1}^{*} \otimes \rho_{2}\right)$. We need to find dominat weights of $\bigwedge^{p} \varphi$.

Let us choose the following Cartan subalgebra

$$
\mathfrak{t}=\left\{\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)\right\}
$$

in $\mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C})=\operatorname{Lie}(G)$. For $p>0$ any weight of this representation has the following form:

$$
\Lambda=-\mu_{i_{1}}-\cdots-\mu_{i_{p}}+\mu_{j_{1}}+\cdots+\mu_{j_{p}}
$$

where

$$
1 \leq i_{1}, \ldots, i_{p} \leq n-k \quad \text { and } \quad n-k+1 \leq j_{1}, \ldots, j_{p} \leq n
$$

For $p=0$ the highest weight is equal to 0 . The weight $\Lambda=0$ is clearly dominant. For $p>0$ assume that $\mu^{1}=\mu_{i_{a}}$, where $i_{a}=\max \left\{i_{1}, \ldots i_{p}\right\}$, and $\mu^{2}=\mu_{j_{b}}$, where $j_{b}=\min \left\{j_{1}, \ldots, j_{p}\right\}$. Then, $\left(\Lambda, \mu^{1}-\mu^{2}\right)<0$. Therefore, the weight Λ is not dominant and we have

$$
\left(\tilde{\mathcal{O}}_{\mathcal{M}}\right)_{0}\left(\mathcal{M}_{0}\right)=\mathbb{C} \quad \text { and } \quad\left(\tilde{\mathcal{O}}_{\mathcal{M}}\right)_{p}\left(\mathcal{M}_{0}\right)=\{0\} \quad \text { for } \quad p>0
$$

Now let us compute the space of global holomorphic functions $\mathcal{O}_{\mathcal{M}}\left(\mathcal{M}_{0}\right)$. Clearly, $\mathcal{J}^{p}\left(\mathcal{M}_{0}\right)=$ $\{0\}$ for large p. For $p \geq 0$ we have an exact sequence

$$
0 \rightarrow \mathcal{J}^{p+1}\left(\mathcal{M}_{0}\right) \longrightarrow \mathcal{J}^{p}\left(\mathcal{M}_{0}\right) \longrightarrow\left(\tilde{\mathcal{O}}_{\mathcal{M}}\right)_{p}\left(\mathcal{M}_{0}\right)
$$

By induction we see that $\mathcal{J}^{p}\left(\mathcal{M}_{0}\right)=\{0\}$ for $p>0$. Hence, for $p=0$ our exact sequence has the form:

$$
0 \rightarrow \mathcal{J}^{0}\left(\mathcal{M}_{0}\right)=\mathcal{O}_{\mathcal{M}}\left(\mathcal{M}_{0}\right) \longrightarrow \mathbb{C}
$$

Note that on any supermanifold we have constant functions. Hence, $\mathcal{O}_{\mathcal{M}}\left(\mathcal{M}_{0}\right)=\mathcal{J}^{0}\left(\mathcal{M}_{0}\right)=$ \mathbb{C}. Using Lemma 1 and induction, we get the result. \square

5 Vector fields on Π-symmetric flag supermanifolds

The Lie superalgebra of holomorphic vector fields on Π-symmetric super-Grassmannian $\boldsymbol{\Pi} \mathbf{G r}_{n|n, k| k}$ was computed in [Oni].
Theorem 3. Let $\mathcal{M}=\boldsymbol{\Pi} \mathbf{G r}_{n|n, k| k}$ and $(n, k) \neq(2,1)$. Then

$$
\mathfrak{v}(\mathcal{M}) \simeq \mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle
$$

Assume that $\mathcal{M}=\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}$. Then

$$
\mathfrak{v}(\mathcal{M}) \simeq \mathfrak{g} \boxplus\langle z\rangle
$$

Here $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ is a \mathbb{Z}-graded Lie superalgebra defined in the following way.

$$
\mathfrak{g}_{-1}=V, \quad \mathfrak{g}_{0}=\mathfrak{s l}_{2}(\mathbb{C}), \quad \mathfrak{g}_{1}=\langle\mathrm{d}\rangle
$$

where $V=\mathfrak{s l}_{2}(\mathbb{C})$ is the adjoint $\mathfrak{s l}_{2}(\mathbb{C})$-module, $\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right]=\{0\}$ and $[\mathrm{d},-]$ maps identicaly \mathfrak{g}_{-1} to \mathfrak{g}_{0}. Here z is the grading operator of the \mathbb{Z}-graded Lie superalgebra \mathfrak{g}.
Proof. The first part of the proof was given in [Oni, Theorem 5.2]. The second part follows from [Oni, Theorem 4.2]. The proof is complete. \square

Remark. For completeness we describe the more general Onishchik result in our particular case $\mathcal{M}=\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}$. In local chart on $\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}$

$$
\left(\begin{array}{ll}
x & \xi \tag{9}\\
1 & 0 \\
\xi & x \\
0 & 1
\end{array}\right)
$$

the Lie superalgebra of vector fields $\mathfrak{v}\left(\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}\right)$ has the following form:

$$
\begin{aligned}
\mathfrak{g}_{-1}=\left\langle\frac{\partial}{\partial \xi}, x \frac{\partial}{\partial \xi}, x^{2} \frac{\partial}{\partial \xi}\right\rangle, \quad \mathfrak{g}_{0} & =\left\langle\frac{\partial}{\partial x}, x^{2} \frac{\partial}{\partial x}+2 x \xi \frac{\partial}{\partial \xi}, x \frac{\partial}{\partial x}+\xi \frac{\partial}{\partial \xi}\right\rangle, \\
\mathrm{d} & =\xi \frac{\partial}{\partial x}, \quad z=\xi \frac{\partial}{\partial \xi} .
\end{aligned}
$$

We will need another description of the Lie superalgebra of vector fields on $\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}$. We have

$$
\mathfrak{v}\left(\boldsymbol{\Pi} \mathbf{r}_{2|2,1| 1}\right) \simeq \mathfrak{q}_{2}(\mathbb{C}) /\left\langle E_{4}\right\rangle \oplus\langle z\rangle
$$

as \mathfrak{g}_{0}-modules. More precisely, in the local chart (9) the isomorphism is given by

$$
\begin{aligned}
&\left(\mathfrak{q}_{2}(\mathbb{C}) /\left\langle E_{4}\right\rangle\right)_{\overline{0}} \simeq \mathfrak{g}_{0} \\
&=\left\langle\frac{\partial}{\partial x}, x^{2} \frac{\partial}{\partial x}+2 x \xi \frac{\partial}{\partial \xi}, x \frac{\partial}{\partial x}+\xi \frac{\partial}{\partial \xi}\right\rangle, \\
&\left(\mathfrak{q}_{2}(\mathbb{C}) /\left\langle E_{4}\right\rangle\right)_{\overline{1}} \simeq\left\langle\frac{\partial}{\partial \xi}, x \frac{\partial}{\partial \xi}+\xi \frac{\partial}{\partial x}, x^{2} \frac{\partial}{\partial \xi}, \xi \frac{\partial}{\partial x}\right\rangle, \\
& z=\xi \frac{\partial}{\partial \xi} .
\end{aligned}
$$

From now on we use the following notations:

$$
\mathcal{M}=\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}, \quad \mathcal{B}=\boldsymbol{\Pi} \mathbf{G r}_{n\left|n, k_{1}\right| k_{1}}, \quad \mathcal{S}=\boldsymbol{\Pi F}_{k^{\prime} \mid k^{\prime}}^{k_{1} \mid k_{1}}
$$

where $k^{\prime}=\left(k_{2}, \ldots, k_{r}\right)$. We also assume that $r>1$. By Proposition 1 and Theorem 2 the projection of the superbundle $\mathcal{M} \rightarrow \mathcal{B}$ determines the homomorphism of Lie superalgebras

$$
\mathcal{P}: \mathfrak{v}(\mathcal{M}) \rightarrow \mathfrak{v}(\mathcal{B}) .
$$

This projection is equivariant. Hence for the natural Lie superalgebra homomorphisms μ : $\mathfrak{q}_{n}(\mathbb{C}) \rightarrow \mathfrak{v}(\mathcal{M})$ and $\mu_{\mathcal{B}}: \mathfrak{q}_{n}(\mathbb{C}) \rightarrow \mathfrak{v}(\mathcal{B})$ we have

$$
\mu_{\mathcal{B}}=\mathcal{P} \circ \mu
$$

Note that for $r>1$ the base \mathcal{B} cannot be isomorphic to $\boldsymbol{\Pi} \mathrm{Gr}_{2|2,| | 1}$. Therefore, by Theorem 3, the homomorphisms $\mu_{\mathcal{B}}$ and hence the homomorphism \mathcal{P} is surjective. We will prove that \mathcal{P} is injective. Hence,

$$
\mu=\mathcal{P}^{-1} \circ \mu_{\mathcal{B}}
$$

is surjective and

$$
\mathfrak{v}(\mathcal{M}) \simeq \mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle
$$

Let us study $\operatorname{Ker} \mathcal{P} \subset \mathfrak{v}(\mathcal{M})$. In previous sections we constructed a localy free sheaf $\tilde{\mathcal{W}}$ on \mathcal{B}_{0}. We have a natural action of $G=\mathrm{GL}_{n}(\mathbb{C})$ on the sheaf \mathcal{W} that preserves the filtration (6) and induces the action on the sheaf $\tilde{\mathcal{W}}$. Hence, the vector bundle $\mathbf{W}_{0} \rightarrow \mathcal{B}_{0}$ corresponding to $\tilde{\mathcal{W}}_{0}$ is homogeneous. We use notations from the proof of Theorem 2. Let us compute the representation of $H \subset G$ in the fiber of \mathbf{W}_{0} over the point $o=H \in \mathcal{B}_{0}$. We will identify $\left(\mathbf{W}_{0}\right)_{o}$ with the Lie superalgebra of vector fields $\mathfrak{v}(\mathcal{S})$ on \mathcal{S}.

Consider a local chart that contains o on the Π-symmetric super-Grassmannian \mathcal{B}. For example we can take the chart corresponding to $I_{1 \overline{0}}=\left\{n-k_{1}+1, \ldots, n\right\}$. The coordinate matrix (4) in this case has the following form

$$
Z_{I_{1}}=\left(\begin{array}{cc}
X_{1} & \Xi_{1} \tag{10}\\
E_{k_{1}} & 0 \\
\Xi_{1} & X_{1} \\
0 & E_{k_{1}}
\end{array}\right)
$$

Let us choose an atlas of \mathcal{M} in a neighborhood of o defined by certain $I_{s \overline{0}}, s=2, \ldots, r$, see (4). In notations (8) and (10) the group H acts on $Z_{I_{1}}$ in the following way:

$$
\left(\begin{array}{cccc}
A & 0 & 0 & 0 \\
C & B & 0 & 0 \\
0 & 0 & A & 0 \\
0 & 0 & C & B
\end{array}\right) Z_{I_{1}}=\left(\begin{array}{cc}
A X_{1} & A \Xi_{1} \\
C X_{1}+B & C \Xi_{1} \\
A \Xi_{1} & A X_{1} \\
C \Xi_{1} & C X_{1}+B
\end{array}\right) .
$$

Hence, for $Z_{I_{2}}$ we have

$$
\begin{align*}
\left(\begin{array}{cc}
C X_{1}+B & C \Xi_{1} \\
C \Xi_{1} & C X_{1}+B
\end{array}\right) & \left(\begin{array}{cc}
X_{2} & \Xi_{2} \\
\Xi_{2} & X_{2}
\end{array}\right)= \\
& =\left(\begin{array}{cc}
B X_{2}+C X_{1} X_{2}+C \Xi_{1} \Xi_{2} & B \Xi_{2}+C X_{1} \Xi_{2}+C \Xi_{1} X_{2} \\
B \Xi_{2}+C X_{1} \Xi_{2}+C \Xi_{1} X_{2} & B X_{2}+C X_{1} X_{2}+C \Xi_{1} \Xi_{2}
\end{array}\right) . \tag{11}
\end{align*}
$$

Note that the local coordinates $Z_{I_{s}}, s \geq 2$, determine the local coordinate on \mathcal{S}. To obtain the action of H in the fiber $\left(\mathbf{W}_{\mathbf{0}}\right)_{\mathbf{o}}$ in these coordinates we put $X_{1}=0, \Xi_{1}=0$ in (11) and modify $Z_{I_{s}}, s \geq 3$, accordingly. We see that the nilradical of H and the subgroup $\mathrm{GL}_{n-k_{1}}(\mathbb{C})$ of R act trivially on \mathcal{S} and that the subgroup $\mathrm{GL}_{k_{1}}(\mathbb{C}) \subset R$ acts in the natural way. This means that H acts as the even part of the Lie supergroup $Q_{k_{1}}(\mathbb{C})$ on Π-symmetric flag supermanifold \mathcal{S}, see (5).

Furthermore, by induction we assume that

$$
\mathfrak{v}(\mathcal{S}) \simeq \mathfrak{q}_{k_{1}}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle \quad \text { or } \quad \mathfrak{v}(\mathcal{S}) \simeq \mathfrak{q}_{2}(\mathbb{C}) /\left\langle E_{4}\right\rangle \nexists\langle z\rangle
$$

Then the induced action of $\mathrm{GL}_{k_{1}}(\mathbb{C})$ on $\mathfrak{v}(\mathcal{S})$ coinsides with the adjoint action of the even part of $Q_{k_{1}}(\mathbb{C})$. Standard computations lead to the following lemma, where we denote by $\mathrm{Ad}_{k_{1}}$ the adjoint representation of $\mathrm{GL}_{k_{1}}(\mathbb{C})$ on $\mathfrak{s l}_{k_{1}}(\mathbb{C})$ and 1 is the one dimensional trivial representation of $\mathrm{GL}_{k_{1}}(\mathbb{C})$.
Lemma 2. The representation ψ of H in the fiber $\left(\mathbf{W}_{0}\right)_{o}=\mathfrak{v}(\mathcal{S})$ is completely reducible. If $\mathfrak{v}(\mathcal{S}) \simeq \mathfrak{q}_{k_{1}}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle$, then

$$
\begin{equation*}
\left.\psi\right|_{\mathfrak{v}(\mathcal{S})_{\overline{\mathrm{o}}}}=\operatorname{Ad}_{k_{1}},\left.\quad \psi\right|_{\mathfrak{v}(\mathcal{S})_{\overline{\mathrm{I}}}}=\operatorname{Ad}_{k_{1}}+1 . \tag{12}
\end{equation*}
$$

If $\mathfrak{v}(\mathcal{S}) \simeq \mathfrak{q}_{2}(\mathbb{C}) /\left\langle E_{4}\right\rangle \nsupseteq\langle z\rangle$, then

$$
\begin{equation*}
\left.\psi\right|_{\mathfrak{v}(\mathcal{S})_{\overline{0}}}=\operatorname{Ad}_{k_{1}}+1,\left.\quad \psi\right|_{\mathfrak{v}(\mathcal{S})_{\overline{1}}}=\operatorname{Ad}_{k_{1}}+1 . \tag{13}
\end{equation*}
$$

Further we will use the chart on $\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}$ defined by $I_{s \overline{0}}$, where $I_{1 \overline{0}}$ is as above, and

$$
I_{s \overline{0}}=\left\{k_{s-1}-k_{s}+1, \ldots, k_{s-1}\right\}
$$

for $s \geq 2$. The coordinate matrix of this chart have the following form

$$
Z_{I_{s}}=\left(\begin{array}{cc}
X_{s} & \Xi_{s} \\
E_{k_{s}} & 0 \\
\Xi_{s} & X_{s} \\
0 & E_{k_{s}}
\end{array}\right)
$$

where again the local coordinate are $X_{s}=\left(x_{i j}^{s}\right)$ and $\Xi_{s}=\left(\xi_{i j}^{s}\right)$. We denote this chart by \mathcal{U}.
Lemma 3. The following vector fields in \mathcal{U}

$$
\frac{\partial}{\partial x_{i j}^{1}}, \frac{\partial}{\partial \xi_{i j}^{1}}, u_{i j}+\frac{\partial}{\partial x_{i j}^{2}}, v_{i j}+\frac{\partial}{\partial \xi_{i j}^{2}}
$$

are fundamental. This is they are induced by the natural action of $\mathrm{Q}_{n}(\mathbb{C})$ on \mathcal{M}. Here $u_{i j}$ and $v_{i j}$ are vector field that depend only on coordinates from $Z_{I_{1}}$.
Proof. Let us prove this statement for example for the vector field $\frac{\partial}{\partial x_{11}^{1}}$. This vector field corresponds to the one-parameter subgroup $\exp \left(t E_{1, n-k_{1}+1}\right)$. Indeed, the action of this subgroup is given by

$$
\left(\begin{array}{cc}
X_{1} & \Xi_{1} \\
E_{k_{1}} & 0 \\
\Xi_{1} & X_{1} \\
0 & E_{k_{1}}
\end{array}\right) \mapsto\left(\begin{array}{cc}
\tilde{X}_{1} & \Xi_{1} \\
E_{k_{1}} & 0 \\
\Xi_{1} & \tilde{X}_{1} \\
0 & E_{k_{1}}
\end{array}\right) \quad \text { and } \quad Z_{I_{s}} \mapsto Z_{I_{s}}, s \geq 2
$$

where

$$
\tilde{X}_{1}=\left(\begin{array}{ccc}
t+x_{11}^{1} & \ldots & x_{1 k_{1}}^{1} \\
\vdots & \ddots & \vdots \\
x_{n-k_{1}, 1}^{1} & \ldots & x_{n-k_{1}, k_{1}}^{1}
\end{array}\right) . \square
$$

Let us choose a basis $\left(v_{q}\right)$ of $\mathfrak{v}(\mathcal{S})$. In [V1] it was proven that any holomorphic vertical vector field on \mathcal{M} can be written uniquely in the form

$$
\begin{equation*}
w=\sum_{q} f_{q} v_{q}, \tag{14}
\end{equation*}
$$

where f_{q} are holomorphic functions on \mathcal{U} depending only on coordinates from $Z_{I_{1}}$. Further, we will need the following lemma:

Lemma 4. Assume that $\operatorname{Ker} \mathcal{P} \neq\{0\}$. Then there exists a vector field $w \in \operatorname{Ker} \mathcal{P} \backslash\{0\}$, such that $w=\sum_{q} f_{q} v_{q}$, where f_{q} are holomorphic functions depending only on even coordinates from $Z_{I_{1}}$.
Proof. Assume that in (14) there is a non-trivial vector field w such that a function f_{q} depends for example on $\xi_{i j}^{1}$. Then $w=\xi_{i j}^{1} w^{\prime}+w^{\prime \prime}$, where w^{\prime} and $w^{\prime \prime}$ are vertical vector fields and their coefficients (14) do not depend on $\xi_{i j}^{1}$, and $w^{\prime} \neq 0$. Using Lemma 3 and the fact that Ker \mathcal{P} is an ideal in $\mathfrak{v}(\mathcal{M})$, we see that

$$
w^{\prime}=\left[w, \frac{\partial}{\partial \xi_{i j}^{1}}\right] \in \operatorname{Ker} \mathcal{P} .
$$

Hence, we can exclude all odd coordinates $\xi_{i j}^{1}$.
Corollary. We have

$$
(\operatorname{Ker} \mathcal{P} \neq\{0\}) \Longrightarrow\left(\mathcal{W}_{0}\left(\mathcal{B}_{0}\right) \neq\{0\}\right)
$$

We will need the following well-known construction for holomorphic homogeneous vector bundles. Let us take any homogeneous vector bundle \mathbf{E} over G / H and $x_{0}=H$. Assume that $v_{x_{0}} \in \mathbf{E}_{x_{0}}$ is an H-invariant. We can construct the G-invariant section of \mathbf{E} corresponding to $v_{x_{0}}$ in the following way. We set

$$
v_{x_{1}}:=g \cdot v_{x_{0}} \in \mathbf{E}_{x_{1}}, \quad \text { where } \quad x_{1}=g x_{0}
$$

Clearly this definition does not depend on $g \in G$ such that $x_{1}=g x_{0}$. Indeed, assume that $x_{1}=g_{1} x_{0}$ and $x_{1}=g_{2} x_{0}$. Then $g_{2}=g_{1} h$, where $h \in H$. Hence,

$$
g_{2}\left(v_{x_{0}}\right)=\left(g_{1} h\right)\left(v_{x_{0}}\right)=g_{1}\left(v_{x_{0}}\right) .
$$

We use this construction to express locally the G-invariant section of \mathbf{W}_{0} corresponding to an H-invariant in $\left(\mathbf{W}_{0}\right)_{x_{0}}$. Let us take the following element $g \in G$:

$$
g=\left(\begin{array}{cc}
E_{n-k_{1}} & A \\
0 & E_{k_{1}}
\end{array}\right) \times\left(\begin{array}{cc}
E_{n-k_{1}} & A \\
0 & E_{k_{1}}
\end{array}\right)
$$

where A is any complex matrix. Then g acts on $\Pi_{k \mid k}^{n \mid n}$ in the following way:

$$
\left(\begin{array}{cccc}
E_{n-k_{1}} & A & 0 & 0 \tag{15}\\
0 & E_{k_{1}} & 0 & 0 \\
0 & 0 & E_{n-k_{1}} & A \\
0 & 0 & 0 & E_{k_{1}}
\end{array}\right)\left(\begin{array}{cc}
X^{1} & \Xi^{1} \\
E_{k_{1}} & 0 \\
\Xi^{1} & X^{1} \\
0 & E_{k_{1}}
\end{array}\right)=\left(\begin{array}{cc}
X^{1}+A & \Xi^{1} \\
E_{k_{1}} & 0 \\
\Xi^{1} & X^{1}+A \\
0 & E_{k_{1}}
\end{array}\right),
$$

We see that $x_{0}=H$ has coordinates $X_{1}=\Xi_{1}=0$. Clearly, $\left\{x_{1} \mid x_{1}=g x_{0}\right\}$ is an open set in \mathcal{B}_{0}. Moreover, element g does not modify fiber coordinates. Therefore, the corresponding to an H-invariant $v_{x_{0}} \in\left(\mathbf{W}_{0}\right)_{x_{0}}$ section v is the constant section $x_{1} \mapsto v_{x_{0}}$ over the open set $\left\{x_{1} \mid x_{1}=g x_{0}\right\}$.
Theorem 4. Assume that $r>1$ and $\mathfrak{v}(\mathcal{S}) \simeq \mathfrak{q}_{k_{1}}(\mathbb{C}) /\left\langle E_{2 k_{1}}\right\rangle$. Then $\operatorname{Ker} \mathcal{P}=\{0\}$ and

$$
\mathfrak{v}\left(\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}\right) \simeq \mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle
$$

Proof. First let us compute the vector space of global sections of \mathbf{W}_{0}. As in Theorem 2, we use the Borel-Weyl-Bott Theorem. The representation ψ of H in $\left(\mathbf{W}_{0}\right)_{o}$ is described in Lemma 2. From (12) it follows that the highest weights of ψ have the form:

$$
\mu_{n-k_{1}+1}-\mu_{n} \quad(\times 2) \quad \text { and } \quad 0 .
$$

The first highest weight is not dominant because by definition of Π-symmetric flag supermanifolds $k_{1}<n$. The second highest weight is clearly dominant. Therefore, the vector
space of global sections of \mathbf{W}_{0} is the irreducible G-module with highest weight 0 . Therefore, $\mathcal{W}_{0}\left(\mathcal{B}_{0}\right) \simeq \mathbb{C}$.

Let v_{o} be the H-invariant element form $\mathfrak{v}(\mathcal{S})$. It is defined by the following one-paremeter subsupergroup

$$
\beta(\tau)=\left(\begin{array}{cc}
E_{k_{1}} & \tau E_{k_{1}} \\
\tau E_{k_{1}} & E_{k_{1}}
\end{array}\right)
$$

in the Lie supergroup $Q_{k_{1}}$. In our chart we have

$$
\begin{equation*}
v_{o}=2 \sum_{i j} \xi_{i j}^{2} \frac{\partial}{\partial x_{i j}^{2}}+u \tag{16}
\end{equation*}
$$

where u is a vector field depending only on coordinates from $Z_{I_{s}}, s \geq 3$. Above we have seen that the corresponding to v_{o} global section is a constant section. Therefore, the unique global section v of \mathbf{W}_{0} in our chart has also the form (16).

Assume that $\operatorname{Ker} \mathcal{P} \neq\{0\}$ and $w \in \operatorname{Ker} \mathcal{P} /\{0\}$ is as in Lemma 4. Clearly the vector fields w and $\alpha(w)$, where $\alpha: \mathcal{W} \rightarrow \mathcal{W}_{0}$, have the same form in our chart. Therefore, $w=a v$ for some $a \in \mathbb{C}$. Furthermore,

$$
\alpha\left(\left[w, v_{i j}+\frac{\partial}{\partial \xi_{i j}^{2}}\right]\right)=2 a \frac{\partial}{\partial x_{i j}^{2}} .
$$

The commutator of these vector fields is an even vector field and it belongs to Ker \mathcal{P}. Hence,

$$
\alpha\left(\left[w, v_{i j}+\frac{\partial}{\partial \xi_{i j}^{2}}\right]\right)=0
$$

because \mathbf{W}_{0} has no global even sections. Therefore, $a=0$ and the proof is complete. \square
Now consider the case when the fiber of superbundle \mathcal{M} is isomorphic to $\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}$.
Theorem 5. Assume that $r=2$ and $\mathcal{S}=\boldsymbol{\Pi} \mathbf{G r}_{2|2,|| |}$. Then

$$
\mathfrak{v}\left(\boldsymbol{\Pi F}_{2,1 \mid 2,1}^{n \mid n}\right) \simeq \mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle
$$

Proof. As in Theorem 4, let us compute the space of global sections of \mathbf{W}_{0}. From (13) it follows that the highest weights of ψ have the form:

$$
\mu_{n-k_{1}+1}-\mu_{n} \quad(\times 2) \quad \text { and } \quad 0 \quad(\times 2)
$$

By the Borel-Weyl-Bott Theorem we get

$$
\mathcal{W}_{0}\left(\mathcal{B}_{0}\right)_{\overline{0}} \simeq \mathcal{W}_{0}\left(\mathcal{B}_{0}\right)_{\overline{1}} \simeq \mathbb{C}
$$

A basic section of $\mathcal{W}_{0}\left(\mathcal{B}_{0}\right)_{\overline{1}}$ was obtained in Theorem 4. It has the form $v=2 \xi_{11}^{2} \frac{\partial}{\partial x_{11}^{2}}$ in our case. Furthermore, we can take $z=\xi_{11}^{2} \frac{\partial}{\partial \xi_{11}^{2}}$ as a basic element of 1-dimensional vector subspace in $\mathfrak{v}(\mathcal{S})_{\overline{0}}$ corresponding to the trivial representation 1. Again in our local chart the unique even section of $\mathcal{W}_{0}\left(\mathcal{B}_{0}\right)_{\bar{o}}$ has locally the form $s=\xi_{11}^{2} \frac{\partial}{\partial \xi_{11}^{2}}$.

Let us take the vector field w as in Lemma 4. The vector fields $\alpha(w)$ and w have the same form in our chart. Hence, $w=a v+b s$, where $a, b \in \mathbb{C}$. Furthermore,

$$
\alpha\left(\left[w, v_{11}+\frac{\partial}{\partial \xi_{11}^{2}}\right]\right)=\alpha\left(2 a \frac{\partial}{\partial x_{11}^{2}}+b \frac{\partial}{\partial \xi_{11}^{2}}\right)=2 a \frac{\partial}{\partial x_{11}^{2}}+b \frac{\partial}{\partial \xi_{11}^{2}} \in \mathcal{W}_{0}\left(\mathcal{B}_{0}\right)=\langle v, z\rangle .
$$

In other words, $2 a \frac{\partial}{\partial x_{11}^{2}}+b \frac{\partial}{\partial \xi_{11}^{2}}$ must be a linear combination of v and z. Hence, $a=b=0$, and the proof is compete.

By induction we get our main result:
Theorem 6. Assume that $r>1$. Then $\mathfrak{v}\left(\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}\right) \simeq \mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle$.

6 The automorphism supergroup of $\Pi F_{k \mid k}^{n \mid n}$

Our main result has infinitesimal nature. However we can determine the connected component of the automorphism supergroup of $\boldsymbol{\Pi} \mathbf{F}_{k \mid k}^{n \mid n}$. Let us discuss this statement in details.

Let us take a complex-analytic supermanifold \mathcal{M} with a compact underlying space \mathcal{M}_{0}. Then the Lie superalgebra of holomorphic vector fields $\mathfrak{v}(\mathcal{M})$ is finite dimensional. Denote by $\mathcal{A} u t(\mathcal{M})_{\overline{0}}$ the Lie group of even global automorphisms of \mathcal{M}. (The fact that $\mathcal{A} u t(\mathcal{M})_{\overline{0}}$ is a complex-analytic Lie group with the Lie algebra $\mathfrak{v}(\mathcal{M})_{\overline{0}}$ was proven in [BK].) Moreover, we have a natural holomorphic action of $\mathcal{A} u t(\mathcal{M})_{\overline{0}}$ on \mathcal{M} (see [BK]) and hence on $\mathfrak{v}(\mathcal{M})$. Therefore, the pair $\left(\mathcal{A} u t(\mathcal{M})_{\overline{0}}, \mathfrak{v}(\mathcal{M})\right)$ is a super Harish-Chandra pair. (See citeViLieSupergroup for the definition of a super Harish-Chandra pair.) Using the equivalence of complex super Harish-Chandra pairs and complex Lie supergroups obtained in [V5] we determine the complex Lie supergroup $\mathcal{A} u t(\mathcal{M})$. We call this Lie supergroup the automorphism supergroup of \mathcal{M}.

Consider the case $\mathcal{M}=\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}$. Above we described a holomorphic action of $\mathrm{GL}_{n}(\mathbb{C})=$ $\mathrm{Q}_{n}(\mathbb{C})_{\overline{0}}$ on \mathcal{M}. In other words we have a homomorphism of Lie groups

$$
\begin{equation*}
\mathrm{Q}_{n}(\mathbb{C})_{\overline{0}} \rightarrow \mathcal{A} u t(\mathcal{M})_{\overline{0}} . \tag{17}
\end{equation*}
$$

This homomorphism induces (almost always, see Theorems 3 and 6) the isomorphism of Lie algebras $\mathfrak{q}_{n}(\mathbb{C})_{\overline{0}} /\left\langle E_{2 n}\right\rangle$ and $\mathfrak{v}(\mathcal{M})_{\overline{0}}$, see Theorems 3 and 6 . In Section 2 we have seen that the kernel of the homomorphism (17) is equal to $\left\{\alpha E_{2 n}\right\}$, where $\alpha \neq 0$, or to the center $\mathcal{Z}\left(\mathrm{Q}_{n}(\mathbb{C})_{\overline{0}}\right)$ of $\mathrm{Q}_{n}(\mathbb{C})_{\overline{0}}$. Therefore, the connected component of the automorphism supergroup $\mathcal{A} u t^{0}\left(\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}\right)$ is determined by the super Harish-Chandra pair

$$
\left(\mathrm{Q}_{n}(\mathbb{C})_{\overline{0}} / \mathcal{Z}\left(\mathrm{Q}_{n}(\mathbb{C})_{\overline{0}}\right), \mathfrak{q}_{n}(\mathbb{C}) /\left\langle E_{2 n}\right\rangle\right)
$$

In other words,

$$
\mathcal{A} u t^{0}\left(\boldsymbol{\Pi F}_{k \mid k}^{n \mid n}\right) \simeq \mathrm{Q}_{n}(\mathbb{C}) / \mathcal{Z}\left(\mathrm{Q}_{n}(\mathbb{C})\right)
$$

In case $\mathcal{M}=\boldsymbol{\Pi G r}_{2|2,1| 1}$, the connected component of the automorphism supergroup $\mathcal{A} u t^{0}\left(\boldsymbol{\Pi G r}_{2|2,1| 1}\right)$ is given by the following super Harish-Chandra pair:

$$
\left(\mathrm{Q}_{2}(\mathbb{C})_{\overline{0}} / \mathcal{Z}\left(\mathrm{Q}_{2}(\mathbb{C})_{\overline{0}}\right) \times \mathbb{C}^{*}, \mathfrak{v}\left(\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}\right)\right)
$$

see Theorem 3 for a description of $\mathfrak{v}\left(\boldsymbol{\Pi} \mathbf{G r}_{2|2,1| 1}\right)$.

References

[A] Akhiezer D. N. Homogeneous complex manifolds. (Russian) Current problems in mathematics. Fundamental directions, Vol. 10 (Russian), 223-275, 283.
[B] Bashkin M.A. Contemporary problems in mathematics and informatics, vol. 3, Yaroslavl State Univ., Yaroslavl 2000, pp. 1116.
[BL] Berezin F.A., Leites D.A. Supermanifolds. Soviet Math. Dokl. 16, 1975, 1218-1222.
[BK] Bergner H., Kalus M. Automorphism groups of compact complex supermanifolds. arXiv:1506.01295
[Kac] Kac V. G. Classification of simple Lie superalgebras, Funktsional. Anal. i Prilozhen., 9:3 (1975), 91-92.
[Man] Manin Yu.I. Gauge field theory and complex geometry, Grundlehren Math. Wiss., vol. 289, Springer-Verlag, Berlin 1988, 1997.
[Oni] Onishchik A.L. Non-split supermanifolds associated with the cotangent bundle. Université de Poitiers, Département de Math., N 109. Poitiers, 1997.
[V1] Vishnyakova E.G. Vector fields on flag supermanifolds (in Russian). Sovremennye problemy mathematiki i informatiki, V. 8, Yaroslavl' State Univ., 2006, 11-23.
[V2] Vishnyakova E.G. Vector fields on Π-symmetric flag supermanifolds (in Russian). Vestnik TvGU, V. 7, Tver, 2007, 117-127.
[V3] Vishnyakova E.G. On holomorphic functions on a compact complex homogeneous supermanifold. Journal of Algebra, Volume 350, Issue 1, 15 January 2012, Pages 174-196.
[V4] Vishnyakova E.G. Lie superalgebras of vector fields on flag supermanifolds, Russ. Math. Surv. 63 394, 2008.
[V5] Vishnyakova E.G. On complex Lie supergroups and split homogeneous supermanifolds. Transformation Groups 16 (2011), no. 1, 265-285.

Elizaveta Vishnyakova
Max Planck Institute for Mathematics, Bonn
E-mail address: VishnyakovaE@googlemail.com

[^0]: ${ }^{1}$ Supported by Max Planck Institute for Mathematics, Bonn.

